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We theoretically study the joint influence of uniform Dzyaloshinskii-Moriya �DM� interactions, symmetric
exchange anisotropy �with its axis parallel to the DM vector�, and arbitrarily oriented magnetic fields on
one-dimensional spin 1 /2 antiferromagnets. We show that the zero-temperature phase diagram contains three
competing phases: �i� an antiferromagnet with Neel vector in the plane spanned by the DM vector and the
magnetic field, �ii� a dimerized antiferromagnet with Neel vector perpendicular to both the DM vector and the
magnetic field, and �iii� a gapless Luttinger liquid. Phase �i� is destroyed by a small magnetic field component
along the DM vector and is furthermore unstable beyond a critical value of easy-plane anisotropy, which we
estimate using Abelian and non-Abelian bosonization along with perturbative renormalization group. We
propose a mathematical equivalent of the spin model in a one-dimensional Josephson junction array located in
proximity to a bulk superconductor. We discuss the analogues of the magnetic phases in the superconducting
context and comment on their experimental viability.
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I. INTRODUCTION

Quantum spin chains continue to be an active focus of
research largely because they serve as interesting model sys-
tems to explore strongly correlated quantum order in low
dimensional antiferromagnets,1 superconductors,2 and ultra-
cold atoms.3 A significant fraction of current research is de-
voted to the understanding of frustrated quantum magnets,
which display a host of exotic ground states.4 One of the
agents responsible for magnetic frustration is the
Dzyaloshinskii-Moriya �DM� �Ref. 5� interaction, Dij · �Si
�S j�, which originates from spin-orbit coupling and broken
inversion symmetry. Si is the spin operator at site i and Di,j is
the DM vector. Since this interaction may induce spiral spin
arrangements in the ground state,6 it is intertwined with fer-
roelectricity in multiferroic spin chains.7,8 Besides, the DM
interaction plays an important role in explaining the electron
spin resonance experiments in some one-dimensional
antiferromagnets.9 Moreover, the DM interaction modifies
the dynamic properties10 and quantum entanglement11 of
spin chains.

The present work is motivated by an elegant recent
study12 that has predicted intriguing field-induced antiferro-
magnetic order in Heisenberg spin 1 /2 chains with uniform
DM interaction �Dij =Dẑ for any i , j�. A crucial aspect of Ref.
12 is that the external magnetic field is taken to be �nearly�
transverse to the DM vector, so that the system has fully
broken spin rotational symmetry. The main objectives of our
work are to generalize the analysis of Ref. 12 for the case of
nonzero symmetric exchange anisotropy as well as to find
new physical contexts where it might be experimentally test-
able.

We begin in Sec. II by introducing the pertinent spin
model. In Sec. III we identify the classical ground states
using the large-spin approximation. Although some features
predicted by the classical analysis are erroneous, most of the
classical ground states have a correspondent in the more rig-

orous quantum analysis performed in Sec. IV. In particular,
we derive a new result regarding how a magnetic field com-
ponent along the DM vector modifies the classical soliton-
lattice phase.

Section IV is divided in two subsections which comple-
ment each other to an extent. The first subsection approaches
the problem from a non-Abelian bosonization perspective
and is constructed around the elegant chiral rotation intro-
duced in Refs. 12 and 13. This subsection constitutes the
core of the present work. The second subsection revisits the
problem from an Abelian bosonization viewpoint, and may
be skipped on a first reading without loss of continuity. The
phase diagram is richest in the case of weak easy-plane an-
isotropy. In this regime there are three competing ground
states: �i� an antiferromagnet with Neel vector in the plane
spanned by the DM vector and the magnetic field, �ii� a
dimerized antiferromagnet with Neel vector perpendicular to
both the DM vector and the magnetic field, and �iii� a gapless
Luttinger liquid. Phase �i� was first identified in Ref. 12 at
the isotropic exchange point. We demonstrate that this phase
is fragile under weak-to-moderate easy-plane symmetric ex-
change anisotropy, and estimate the critical value of the an-
isotropy beyond which it disappears. Furthermore, we show
that a very small magnetic field component along the direc-
tion of the DM vector suffices to destabilize phase �i� in the
neighborhood of the isotropic exchange point. Thus the ex-
perimental detectability of phase �i� appears unlikely except
in chains with easy-axis anisotropy. Phases �ii� and �iii�
emerge as a consequence of symmetric exchange anisotropy
and constitute the main findings of this work. The Luttinger
liquid ground state prevails when the DM interaction is large
compared to the magnetic field perpendicular to the DM vec-
tor, and the antiferromagnetic phase is stabilized under the
opposite condition. Even though the outcomes of the Abelian
and non-Abelian methods agree roughly, the former method
misses a few key features such as the coexistence of antifer-
romagnetism and dimerization in phase �ii�. This is more a

PHYSICAL REVIEW B 81, 144419 �2010�

1098-0121/2010/81�14�/144419�18� ©2010 The American Physical Society144419-1

http://dx.doi.org/10.1103/PhysRevB.81.144419


merit of the chiral rotation carried out in conjunction with
the non-Abelian treatment than an intrinsic flaw of the Abe-
lian bosonization.

In Sec. V we recast the magnetic model onto a mathemati-
cally equivalent problem that consists of a one-dimensional
Josephson junction array located in close proximity to a bulk
superconductor and placed under a magnetic field. The
analysis of Sec. IV can be directly transferred to determine
the phase diagram of this system at small or large magnetic
fields, depending on whether the array is made of � junctions
or conventional junctions, respectively. Phases �i� and �ii�
discussed in Sec. IV correspond to a a charge density wave
and a vortex lattice, respectively. In the vortex lattice phase,
circulating supercurrents flow between the array and the bulk
superconductor. The magnitude of these circulating currents
oscillates from one “plaquette” to another; this is how dimer-
ization manifests itself in the superconducting context. The
magnetic Luttinger liquid maps into a state in which the
Josephson coupling between the superconducting islands and
the bulk superconductor becomes irrelevant. The transitions
between these phases may be controlled with external mag-
netic fields and by engineering material parameters. We out-
line the desiderata for an experimental implementation.

Section VI contains a brief summary of this work and the
Appendixes A and B include a few technical details concern-
ing the classical and quantum phase diagrams.

II. MODEL

Consider an S=1 /2 one-dimensional antiferromagnetic
chain in presence of a uniform DM interaction and an exter-
nal magnetic field. Its Hamiltonian is

H = J�
j

�Sj
xSj+1

x + Sj
ySj+1

y + �Sj
zSj+1

z � + Dẑ · �
j

�S j � S j+1�

− �
j

�hxS
x + hzS

z� , �2.1�

where J is the exchange coupling, � is the symmetric ex-
change anisotropy parameter, D is the strength of the DM
interaction, ẑ is the direction of the DM vector �chosen to be
parallel to the symmetric exchange anisotropy axis�, and
hx�hz� is the component of the magnetic field perpendicular
�parallel� to the DM vector. This model describes one-
dimensional magnetic systems with broken inversion sym-
metry, as well as interacting quantum wires with spin-orbit
interactions.12 As we demonstrate in Sec. V, Eq. �2.1� is also
germane for a one-dimensional array of Josephson junctions
that are proximity coupled to a bulk superconductor �Fig.
17�.

Equation �2.1� may be rewritten in a physically more sug-

gestive manner by rotating the spins as S̃j
+=exp�−i�j�Sj

+,
where �=tan−1�D /J�� �0,� /2�. This rotation gauges away
the DM interaction and produces a XXZ antiferromagnet
with an altered exchange anisotropy �eff and a magnetic field
that rotates with a pitch angle � in the plane perpendicular to
the DM vector,

H = J̃�
j

�S̃j
xS̃j+1

x + S̃j
yS̃j+1

y + �effS̃j
zS̃j+1

z �

− hx�
j

�S̃j
+ei�j + S̃j

−e−i�j� − hz�
j

S̃j
z, �2.2�

where J̃=J /cos � and �eff=� cos ���. When D�J the
spiral magnetic fields rotates rapidly and thus Eq. �2.2� can
be mapped onto a XXZ model with a magnetic field along ẑ.
When D�0 the spiral magnetic field rotates very slowly and
Eq. �A8� transforms onto a XXZ model with a spatially uni-
form magnetic field in the xz plane. In this work we shall be
concerned with 0�D, hx, hz�J.

III. CLASSICAL ANALYSIS

Equation �2.1� is a complicated model with fully broken
spin rotational symmetry. For pedagogical purposes it is use-
ful to begin with simple classical considerations which shed
light on the possible ground states of the fully quantum me-
chanical problem. When S is large, it is adequate to substitute
S j =S�sin � j cos 	 j , sin � j sin 	 j , cos � j� in Eq. �2.1� and seek
solutions that satisfy �H /�	i=�H /��i=0 for all i. We limit
ourselves to �eff
0. For hz=0 we find five distinct phases:

�i� Uniform ferromagnet �FM�, i.e., 	 j =0 �aligned with
the field� and � j =�. There are two solutions: �=� /2 or
�=sin−1(hx /2JS�1−��). Its energy per site is �FM=JS2��
+ �1−��sin2 ��−hxS sin �.

�ii� Uniform antiferromagnet with Neel vector along x̂
�“Nx”�, i.e., � j =� /2 and 	 j =�j. Its energy per particle is
�Nx=−JS2.

�iii� Uniform antiferromagnet with Neel vector along ŷ
�“Ny”�, i.e., � j =� /2 and 	 j = �−1� j�� /2−	0�. 	0
=sin−1�hx /4JS� is the canting angle towards the direction of
the magnetic field �x̂�. Its energy per site is �Ny =−JS2

−hx
2 /8J. �Ny��Nx whenever hx�0.
�iv� Uniform antiferromagnet with Neel vector along ẑ

�“Nz”�, i.e., � j = �−1� j�0+�j and 	 j =0. �0=sin−1(hx /2JS�1
+��) is the canting angle towards the direction of the mag-
netic field. The energy per site for this phase is �Nz=−JS2�
−hx

2 /4J��+1�.
�v� Spiral XY antiferromagnet �LL�. For hx=0, this phase

is characterized by � j =� /2 and 	 j =�j+�j+.  is the glo-
bal angle of the spiral; its arbitrariness renders the LL phase
gapless, in contrast to the ones introduced above. Its energy
per site is �LL=−JS2 /cos �. For hx�0, the spiral distorts
into an incommensurate soliton lattice14 with � j =� /2. A
single soliton is described by 	 j =�j+a�j�+ �−1� jb�j�,
where a�j�=2 tan−1�exp�jhx /2J̃S��−� /2 and b�j�
=−hx /2J̃S tanh�jhx /2J̃S� vary slowly on the scale of a lattice
spacing. Figure 1 illustrates the spin arrangement in the soli-
ton.

When hx=0, it is easy to verify analytically that the clas-
sical ground state is LL �if �eff=� cos ��1� or Nz �if �eff

1�. When hx� �0,�DS� and ��1 the classical ground
state is LL �incommensurate soliton lattice�. hx=�DS is the
critical field for the commensurate-incommensurate transi-
tion. This critical field is independent of the strength of easy-
plane anisotropy because � j =� /2. For hx� ��DS ,4SJ� and
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��1 the ground state is “Ny.” When hx
4SJ the ground
state is FM. For the purposes of this paper hx will never be
large enough to stabilize the FM phase �but see Sec. V for an
exception�. For �
1, the ground state is “Nz” regardless hx
�see Fig. 2�.

Thus far we have neglected hz. After turning on hz, “Ny”
develops a uniform canting towards z with cos �
�hz /2JS�1+��. On the other hand the soliton develops a
canting that has both uniform and staggered components. As
we explain in Appendix A, this leads to a redefinition of the
soliton parameters that results in an increased critical field
for the commensurate-incommensurate transition,

hx,c = ��J̃S�1 +
hz

2

8J̃2S2�1 − �eff
2 �
� . �3.1�

Equation �3.1� applies when 	�̃−1	�hz
2 / J̃2S2, �da /dx−��2.

It also indicates that the influence of hz on the critical field

gets weaker when �̃ decreases. Regarding “Nz,” its Neel vec-

tor tilts towards x by an angle �̃. For ��1, sin �̃�
−hz /
hx

2+hz
2 and the Neel vector is nearly perpendicular to

h=hxx̂+hzẑ. Figure 3 illustrates the influence of hz in the
classical ground states.

Turning on hz modifies the phase diagram qualitatively.
For ��1, LL and “Ny” remain as the ground states, although
the critical field for the spin-flop transition is now � depen-
dent. For ��1 the ground state is “Nz” with a tilted Neel
vector.

Some of these classical considerations apply in the case of
the S=1 /2 spin chains, while others do not. For instance, the
occurrence of “Ny” and gapless �spiral� ground states will be
corroborated by the upcoming quantum analysis. Similarly,
our study will confirm that the critical field for the
commensurate-incommensurate transition is independent of
� at hz=0 but not at hz�0. In contrast, the quantum analysis
will show that “Nz” can be the ground state even at ��1,
thus refuting the classical prediction.

IV. QUANTUM ANALYSIS

In this section we analyze the exact low energy behavior
of Eq. �2.1� by combining renormalization group arguments
with Abelian and non-Abelian bosonization techniques. The
former technique is best suited for large easy plane anisotro-
pies ��eff�0� whereas the latter method is most reliable at
�eff=1. Bearing in mind that each approach has its shortcom-
ings, we shall compare them with each other when possible.

A. Non-Abelian bosonization

Many S=1 /2 antiferromagnetic chains showcase a weak
exchange anisotropy because they involve Cu2+ compounds.
Furthermore, spin-orbit coupled antiferromagnets without in-
version symmetry typically exhibit �eff�1 because the an-
isotropy induced by the DM interaction nearly cancels the
preexisting exchange anisotropy.15

(b)

(a)

x

y

FIG. 1. Classical magnetic configuration in the “Ny” �a� and LL
�b� phases when hx�0, D�0 and hz=0. All spins lie in the xy
plane. The solid arrows replicate the staggered part of the magneti-
zation, whereas the dotted arrows represent the uniform canting
towards the direction of the field. The uniform component of the
spins is spatially inhomogeneous in the LL phase and it vanishes at
the center of the solitons. In �b� we limit ourselves to one soliton;
for 0�hx��DS these solitons form a periodic array �Ref. 14� with
a periodicity that is incommensurate with the underlying lattice.

LL "N "y

"N "z

∆

hx/Dπ/2

1

FIG. 2. Classical phase diagram for S=1 /2, hz=0 and hx, D
�J. Compare this with the quantum phase diagram �e.g., Fig. 4�.
When hz�0 the phase boundary between LL and “Ny” becomes �
dependent, with the boundary being increasingly displaced towards
larger hx /D as � approaches 1 from below. In addition, when hz

�0 the onset of “Nz” occurs at �
1.

(c)

(b)

(a)
y

x

FIG. 3. Classical magnetic configuration when hx�0, D�0 and
hz�0. �a� “Ny”: the dotted circles indicate uniform canting towards
z. �b� LL: the spins conform into a soliton lattice in the xy plane
much like in Fig. 1, but they are now canted towards ẑ as well. As
detailed in Appendix A, the latter canting is spatially inhomoge-
neous. On one hand, it has a nonstaggered component �not shown in
this figure� that varies slowly along the soliton. In addition, the
canting angle has a staggered component �represented in the figure
via dotted and crossed circles� that is nonzero only at and near the
core of the soliton. �c� “Nz:” due to hz�0 the Neel vector is tilted
from z towards x. Consequently the canting component is not uni-
form. The crossed circles denote a magnetization component that
points into the page.
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The ground-state properties of these nearly isotropic sys-
tems may be conveniently accessed using the non-Abelian
bosonization.1,16,17 In this framework, the spin operators are
approximated as

S j → a�JL�x� + JR�x� + �− 1�x/aN�x�� , �4.1�

where a is the lattice constant. JL and JR are the uniform
components of the left- �right-� spin-currents, respectively.
These currents are conserved at the SU�2� symmetric point
��eff=1�. N is the staggered component of the local spin
density.

In the continuum limit Eq. �2.1� is bosonized in terms of
the SU�2�1 Wess-Zumino-Novikov-Witten model. The low
energy effective Hamiltonian can be written in the Sugawara
form, which is quadratic in the SU�2� currents,

H = H0 + Hbs + V , �4.2�

where

H0 =
2�v

3
� dx�JR · JR + JL · JL� ,

Hbs = − gbs� dx�JR
x JL

x + JR
y JL

y + �1 + �xc�JR
z JL

z � ,

V = − hx� dx�JR
x + JL

x� − hz� dx�JR
z + JL

z � + D̃� dx�JR
z − JL

z �

− gbs�DM� dxJR
z JL

z , �4.3�

where v�Ja� /2 is the velocity of the low energy excita-
tions near the isotropic point �we neglect the anisotropy-
induced renormalization of the velocity�. H0 is the non-
interacting part, the backscattering part Hbs is the leading
marginally irrelevant interaction, and V collects the second
line of Eq. �2.1�. gbs is the �temperature-dependent� coupling
constant for the effective interaction, �xc�c�1−�� is the
symmetric exchange anisotropy parameter and c is a positive

constant. Also, D̃�D�1+2�2� /� and �DM=c�D2 /J2, where
c�
0 is another constant. ��O�1� is the mean-field expec-
tation value of the charge operator. Also,

�� �xc + �DM �4.4�

is the effective anisotropy parameter, such that ��0 corre-
sponds to easy-axis anisotropy �easy axis: ẑ� and �
0 indi-
cates an easy-plane anisotropy �easy plane: xy�.

The marginal coupling gbs at energy scale T was deter-
mined accurately from the Bethe ansatz,18

1

g�T�
+

1

2
log�g�T�� = log�
�

2
e�+1/4 J

T
� , �4.5�

where g�T��gbs /2�v, �=0.577. . . and T is the temperature.
While deriving the expression for V in Eq. �4.3� we have

exploited the operator product expansion17 �OPE� and have
kept a higher order term ��D2 /J2� when expanding in gradi-
ents of �x�. This term has been neglected in previous
studies,12 yet as we shall show below it is essential in order

to reproduce the correct phase diagram in some simple lim-
its. Hereafter we absorb this term into Hbs.

The constants c, c�, and � are related to each other and
may be determined exactly in certain limits. For instance, we
know that the total anisotropy parameter �=�xc+�DM must
vanish when �eff=1, i.e., when �= �1+D2 /J2�1/2. Expanding
the square root to leading order in D /J, we arrive at c�
=c /2. Furthermore, when hx=0 and �eff�1 it is well known
�e.g., from the Bethe ansatz method� that the ground state is
a Luttinger liquid with a specific value of the Luttinger pa-
rameter. This determines c in absence of fields �more on this
below�. Finally, the value of � may be extracted via the OPE
of the DM interaction, which relates � with c�. For the pur-
poses of this work, the precise value of � will not be impor-
tant and we shall not be concerned about the distinction be-

tween D̃ and D in our numerical calculations. The
renormalization group analysis of Eq. �4.2� can be simplified
considerably by applying a chiral rotation around the y
axis,12 which acts differently on right and left currents,

JR�L� = R��R�L��MR�L�

R��R�L�� =  cos �R�L� 0 sin �R�L�

0 1 0

− sin �R�L� 0 cos �R�L�
�

�R = tan−1�dR

hx
� −

�

2
; dR = D̃ − hz

�L = − tan−1�dL

hx
� −

�

2
; dL = D̃ + hz. �4.6�

The key motivation for the chiral rotation is that it recasts V
into

V =� dx�
dR
2 + hx

2MR
z + 
dL

2 + hx
2ML

z � , �4.7�

which is an operator proportional to MR/L
z .

Consequently it can be eliminated19 by the following
position-dependent phase shifts:

MR
+ = MR

x + iMR
y → MR

+ exp�− i�t	 − t��x� ,

ML
+ = ML

x + iML
y → ML

+ exp�i�t	 + t��x� ,

MR
z → MR

z +
t	 − t�

4�
,

ML
z → ML

z +
t	 + t�

4�
, �4.8�

where

t	 = �
dL
2 + hx

2 + 
dR
2 + hx

2�/2v ,
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t� = �
dL
2 + hx

2 − 
dR
2 + hx

2�/2v . �4.9�

The fact that the DM interaction and the magnetic field may
be treated on the same footing and absorbed together through
phase shifts is a qualitative advantage of the chiral rotation.13

While H0 remains invariant throughout, the successive tras-
formations modify the backscattering term as follows:

Hbs = 2�v� dx�yA�MR
z ML

x − MR
x ML

z � + ỹA�MR
x ML

z + MR
z ML

x�

+ �
a=x,y,z

yaMR
a ML

a� → HA + H̃A + HB + HC + H�,

where

HA = �vyA� dx�MR
z ML

+ei�t	+t��x − MR
+ML

z e−i�t	−t��x + H.c.� ,

H̃A = �vỹA� dx�MR
z ML

+ei�t	+t��x + MR
+ML

z e−i�t	−t��x + H.c.� ,

HB = �vyB� dx�MR
+ML

−e−i2t	x + H.c.� ,

HC = �vyC� dx�MR
+ML

+ei2t�x + H.c.� ,

H� = − 2�vy�� dxMR
z ML

z . �4.10�

In Eq. �4.10� we have neglected small terms that originate
from the shifts in ML

z and MR
z . The initial values for the

coupling constants in Eq. �4.10� are given by

yx�0� = −
gbs

2�v
��1 +

�

2
�cos �− −

�

2
cos �+� ,

yy�0� = −
gbs

2�v
,

yz�0� = −
gbs

2�v
��1 +

�

2
�cos �− +

�

2
cos �+� ,

yA�0� =
gbs

2�v
�1 +

�

2
�sin �−,

ỹA�0� = −
gbs

2�v

�

2
sin �+, �4.11�

where ����R��L and

yC �
1

2
�yx − yy� ,

yB �
1

2
�yx + yy� ,

y� � − yz. �4.12�

The anisotropy parameter � modifies the initial couplings
and combines with hz to introduce an extra coupling constant
ỹA in the renormalization group �RG� equations �note that
ỹA�0�=0 when hz=0�.

Because of the oscillatory phase factors introduced by Eq.
�4.8�, the RG analysis of H must be carried out in multiple
stages. In the first stage we integrate out momenta that are
large compared to max�t	 , t�� and thus all phase factors may
be ignored in Hbs. The flow equations can then be derived in
the standard manner17 using OPE,

dyx

dl
= yzyy ,

dyy

dl
= yzyx − �ỹA + yA��ỹA − yA� ,

dyz

dl
= yxyy ,

dyA

dl
= yyyA,

dỹA

dl
= − yyỹA. �4.13�

For convenience we begin integrating Eq. �4.13� at an initial
energy scale T0=0.077J, where the effective coupling has the
value gbs�T0��0.23� �2�v� as dictated by Eq. �4.5�. This is
a low enough energy scale, and a small enough value of
gbs�T�, that the above �lowest order� RG equations apply, at
least approximately. We then integrate Eq. �4.13� towards
lower energy scales in order to determine the zero-
temperature phase diagram. l� log�L /a0�, where L is the
length of the chain and a0=v /T0=20.4a is the ultraviolet RG
cutoff length scale.

When �=0 Eqs. �4.11� and �4.13� reduce to those shown
in Ref. 12. The fact that �
0 for an isotropic ��xc=0�
Heisenberg antiferromagnet appears to have been overlooked
by Ref. 12, which takes �xc=0 and �eff=1 simultaneously
even in presence of DM interactions.

Equation �4.13� is no longer valid when l

min(log�1 /a0t	� , log�1 /a0t��). For definiteness we assume
t�� t	, which holds, e.g., when hz�D ,hx. Then, at l
 l	
� log�1 /a0t	�, exp�it	x� oscillates rapidly and thus the fac-
tors multiplying it in Hbs average to zero. Therefore yA, ỹA,
and yB stop renormalizing at l= l	. In contrast, the factor that
multiplies yC is approximately uniform because t�� t	. The
flow equations for the second RG stage are obtained by set-
ting yA= ỹA=0 and yB=0 �i.e. yx=−yy� in Eq. �4.13�. This
yields

dyC

dl
= y�yC,
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dy�
dl

= yC
2 , �4.14�

which are the famous Kosterlitz-Thouless �KT� equations
with known analytic solution. The “initial” conditions for the
second RG stage are y��l	�=−yz�l	� and yC�l	�= �yx�l	�
−yy�l	�� /2. We integrate Eq. �4.14� from l= l	 up until l= l�
� log�1 /a0t��. At l= l� the flow of yC stops because its coef-
ficient in Hbs contains a exp�it�x� factor. By setting yC=0 in
Eq. �4.14�, it follows that y� stops flowing as well. Thus at
l= l� the system is in its ground state, the nature of which is
determined by the final values of the coupling constants.

In order to elicit the physical meaning of the different
ground states we resort to the relation17 between the non-

Abelian operators and the bosonic fields ��̃ ,�̃� with which
the Abelian bosonization is constructed,

MR
+ =

1

2�a
e−i
2���̃−�̃�; ML

+ =
1

2�a
ei
2���̃+�̃�,

ML
z =

1

2
2�
��x�̃ + �x�̃�; MR

z =
1

2
2�
��x�̃ − �x�̃� ,

N� =
�

�a
e�i
2��̃,

Nz =
�

�a
sin�
2��̃� , �4.15�

where �Nx ,Ny ,Nz� is the staggered magnetization in the ro-

tated frame. �̃ and �x�̃ are canonically conjugate fields, i.e.,

��̃�x� ,�x�̃�x���= i��x−x��. We reserve the � and � notation
�without tilde� for the next subsection, where we shall em-
ploy Abelian bosonization in a different coordinate system.

Eq. �4.15� yields MR
+ML

++H.c.�cos�
8��̃� and MR
+ML

−

+H.c.�cos�
8��̃�. Hence if yC�l��→�� the minimum en-

ergy state corresponds to cos�
8��̃�=�1, which implies

that �̃ gets ordered and a gap is opened in the spin excitation
spectrum. Furthermore, Eq. �4.15� shows that when

cos�
8��̃�=1�−1� there is long-range antiferromagnetic or-
der with the Neel vector pointing along x̂ �ŷ� in the rotated
frame.

When 	yB�l��	→� the minimum energy state corresponds

to cos�
8��̃�=�1. Once again resorting to Eq. �4.15�, it

follows that when cos�
8��̃�=1 or −1 the system settles
into a dimerized state or an antiferromagnetic state with Neel
vector along ẑ in the rotated frame, respectively. Both phases

are gapped because �̃ is ordered.

In the LL phase neither �̃ nor �̃ order. This gapless Lut-
tinger Liquid has dominant dimer or spin density wave cor-
relations depending on whether yC�l�� dominates over yB�l��
or vice versa. At first glance a gapless ground state appears
unlikely in a model with completely broken spin rotational
symmetry; however, it is not unprecedented. Similar states
with gapless spin excitation spectra occur in magnetized,
spin-orbit coupled, one-dimensional conductors that are

placed under a magnetic field.20 As we shall see below, the
LL ground state results when D dominates over hx.

In order to determine what the aforementioned ordered
states mean in terms of the original spin variables J and N,
we once again perform the rotation introduced in Eq. �4.6�
and arrive at

Nx = cos��+

2
�Nx − sin��+

2
�Nz,

Nz = sin��+

2
�Nx + cos��+

2
�Nz,

Ny = cos��−

2
�Ny − sin��−

2
�E ,

� = sin��−

2
�Ny + cos��−

2
�E . �4.16�

Ni and E denote the Neel vectors and the dimerization in the
rotated frame, respectively. Ni and � are their counterparts in
the original coordinate system. The derivation of Eq. �4.16�
becomes straightforward after recognizing that16

MR � tr��g−1�zg�; ML � tr��g−1�z̄g� ,

N = tr��g� ,

E = tr�g� , �4.17�

where � is a vector of Pauli matrices, �z�z̄�=�t /v+ �−��x and

g � � ei
2�� e−i
2��

− ei
2�� e−i
2��� �4.18�

is the SU�2� matrix field that enters the WZNW action and
transforms as

g → ei�y�L/2ge−i�y�R/2 �4.19�

under a chiral rotation �this g is of course not to be confused
with its homonym of Eq. �4.5��. While we find �E�=0 for all
values of D, hx and hz, there exist regions of parameter space
for which �Ny��0. This then translates into a coexistence of
antiferromagnetism �with Neel vector along ŷ� and dimeriza-
tion in the original frame. Table I enumerates and character-
izes this and other possible ground states of Eq. �2.1� in the
original coordinate system.

In Appendix B we digress on some simple limits in which
the phase diagram is known with certainty. Besides provid-
ing a reality check, this enables us to determine the value of
the constant c introduced above Eq. �4.4�. This appendix
may be skipped on a first reading.

We now embark on the numerical study of the general
phase diagram for Eq. �2.1�. Figure 4 characterizes the influ-
ence of the effective exchange anisotropy for hx�0 and hz
=0. When �eff
1 ���0� the only available ground state is
“Nz.” When �eff�1 ��
0�, “Ny” prevails at hx /D�1 and
LL reigns at hx /D�1. From Eq. �4.16� it is clear that “Ny”
contains dimerization that is most noticeable near the phase
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boundary with LL, fading away as hx /D→�. As the easy-
plane anisotropy gets stronger, the range of hx /D for which
“Nz” is the ground state becomes narrower. As a matter of
fact “Nz” disappears completely for �eff��c, where the criti-
cal value �c depends on hx, D and hz. We shall revisit and
reafirm this point in the next subsection. For �eff��c, the
phase boundary between LL and “Ny” is independent of �
and occurs at hx�1.5D. This regime matches fairly well
with the classical predictions of Sec. III, where the critical
field for the commensurate-incommensurate transition was
found to be hx,c=�DS=�D /2.

Figure 5 differs from Fig. 4 only quantitatively, but serves

to highlight that “Nz” is more robust for larger values of D
and hx even as hx /D is unchanged. This observation can be
understood as follows. When �eff�1, the value of yC de-
creases during the first stage of RG. When D and hx are very
small, l	 is large and the prerequisite for flowing to “Nz”
�yC�l	�
−y��l	� at y��0� is less likely to be fulfilled. The
larger D and hx are, the smaller l	 and thus the shorter the
decay of yC; this improves the odds for a “Nz” ground state.

Figure 6 shows that for a given anisotropy the phase
boundaries between LL, “Ny” and “Nz” are linear. It is
straightforward to explain this behavior analytically. Since
hz=0 we have �+=−� and hence ỹA�l�=0. Furthermore, we
shall assume that yA is small in the first stage of the RG flow.
This assumption is adequate only if sin �−�0. Fortunately,
this condition is satisfied when D�hx ��−��� or D�hx
��−�0�, which are the regions of interest when seeking “Ny”
or LL. Thus neglecting yA and ỹA from the onset, we are left
with KT equations for yC and y�, the initial conditions being

y��0� =
gbs

2�v
��1 +

�

2
�cos �− −

�

2
� ,

TABLE I. Ground states for Eq. �2.1�, based on the value of the
coupling constants at the end of the RG flow. Our calculations show
that �E�=0 for any hx ,hz, and D. However, this does not preclude a
dimerized phase in Eq. �2.1� because the gapped phase labeled as
“Ny” contains a mixture of Neel-y correlations along with dimeriza-
tion. Our RG analysis demonstrates that “Ny” emerges when D
�hx and ��1. It follows from Eq. �4.16� that the dimerization
component of this phase is enhanced as D gets larger. The nomen-
clature for gapped phases labeled as “Nx” and “Nz” is motivated by
the hz=0 case, for which “Nx” �“Nz”� means antiferromagnetic or-
der with Neel vector along x̂�ẑ�. When hz�0 the Neel vector lies in
the xz plane for both phases.

yB�l�� yC�l��
Ground state

�rotated frame�
Ground state

�original frame�

+� finite �E��0 “�”: ����0� �Ny�
−� finite �Nz��0 “Nx”: �Nx��0� �Nz�
finite −� �Ny��0 “Ny”: ����0� �Ny�
finite +� �Nx��0 “Nz”: �Nx��0� �Nz�
finite finite disordered disordered

FIG. 4. Phase diagram corresponding to Eq. �2.1�, derived using
non-Abelian bosonization. We fix D=5�10−4J and hz=0; we vary
hx and �eff �note that �eff and � are nearly identical in this figure�.
For �eff
1 �easy axis anisotropy�, the ground state is unequivo-
cally “Nz.” For �eff�1 �easy plane anisotropy�, two new phases
emerge: the gapless LL at D�hx and the gapped “Ny” at D�hx.
The phase line separating “Ny” and “Nz” has a horizontal asymptote
at �eff=1 as hx /D→�. Below a critical value of the anisotropy
��eff��c�0.973 in this figure� “Nz” can no longer be the ground
state.

FIG. 5. Phase diagram corresponding to Eq. �2.1�; derived using
non-Abelian bosonization. D=0.01J and hz=0; we vary hx and �.
Comparing this plot with Fig. 4 it is clear that for a given D /hx,
“Nz” is more robust when D is larger. In other words, �c ��0.94 in
this figure� decreases as D and hx increase.

FIG. 6. Phase diagram with ��c�1−�eff��0.02 and hz=0; de-
rived using non-Abelian bosonization. “Ny” prevails when D /h
�
� and LL prevails when h /D�
�. These results may be under-
stood analytically, as discussed in the text.
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yC�0� = −
gbs

4�v
��1 +

�

2
�cos �− − 1 +

�

2
� . �4.20�

On one hand, the KT equations lead to “Ny” provided that
yC�0 and y�
0 �or alternatively if yC�y� and y��0, al-
though this is not satisfied at small ��. After some algebra
this amounts to requesting �−� �−2
� ,2
��, for ��1. Us-
ing D /hx=tan �−��−, it follows that “Ny” exists when 0
�D /hx�
�. This is why we have a linear phase boundary
between “Ny” and LL. Moreover, the slope of the corre-
sponding line in Fig. 6 matches fairly well with 
�. On the
other hand, the KT equations predict LL if y��0 and yC
�y��−yC. These inequalities may be reduced to cos �−

�2�−1, where we have expanded for small �. This condi-
tion is satisfied for �−� ��−2
� ,�� or equivalently D /hx

�
�, which is another straight line.
For completeness we include Figs. 7–9, which display

typical RG flows for the coupling constants in each of the
phases.

Thus far we have taken the magnetic field to be com-
pletely perpendicular to the DM vector. Figures 10 and 11
evidence that even a tiny hz can modify the phase diagram
substantially, owing to the large correlation length of the
ordered states near �=1. As � is made smaller the influence
of hz on the phase diagram becomes less dramatic, as will

be shown in the next subsection. Let us denote as lc the
value of l at which 	yC	�1. It follows from the analytical
solution of the KT equations17 that lc= ��
−cos−1�−y��l	� /yC�l	��� /
yC�l	�2−y��l	�2 �for 	yC�l	�	

 	y��l	�	� or lc=cosh−1�ys�l	� / 	yC�l	�	� /
y��l	�2−yC�l	�2

�for 	yC�l	�	� 	y��l	�	�. We find lc
10 for typical values of
D and hx.

22 This means that the correlation length of the
antiferromagnetic states is �
a0 exp�10�. When hz�0, t� is
finite and insofar as t��exp�−10�a0

−1 the flow of yC stops
before it reaches the strong coupling limit. Specifically, the
critical value for the field is

0 10 20 30 40
l=log(L/a

0
)

-0.2

-0.1

0

0.1

0.2
y

C
yσ
y

A

FIG. 7. �Color online� Typical flow of the coupling constants in
the LL phase. D=0.01J, hx /D=0.1, hz=0 and ��0.975. ỹA�l�=0
and yB�l��0 �not shown�. A horizontal line indicates that a particu-
lar coupling constant has stopped flowing at because of rapid spatial
oscillations. l	�2, l�=�.

2 4 6 8 10 12 14
l=log(L/a

0
)

-0.4

-0.2

0

0.2

0.4
y

C
y

B
yσ
y

A

FIG. 8. �Color online� Typical flow of the coupling constants in
the “Ny” phase. D=0.01J, hx /D=5, hz=0 and ��0.975. ỹA�l�=0
�not shown�. l	�0.4, l�=�.

5 10 15 20 25
l=log(L/a

0
)

-0.1

0

0.1

0.2

0.3

0.4

0.5
y

C
y

A
yσ
y

A

FIG. 9. �Color online� Typical flow of the coupling constants in
the “Nz” phase. D=0.01J, hx /D=1.5, hz=0 and ��0.975. ỹA�l�
=0 �not shown�. l	�1.5, l�=�. Had we chosen a smaller � the
strong coupling would have been reached at larger value of l. This
is why the “Nz” phase at ��1 is particularly fragile to hz�0.

FIG. 10. Influence of hz on the phase diagram of Eq. �2.1�;
derived using non-Abelian bosonization. hz=10−6hx and ��c�1
−�eff��0.02. The LL ground state is defined �somewhat arbitrarily�
via 	yC�l��	�0.2. Even for a small z-component of the field the
outcome is dramatically different from Fig. 6. In this figure “Ny” is
no longer present �it resurfaces for smaller �eff� and “Nz” can be
found only in a limited region of the parameter space �that of D
�hx and relatively large D�. The reason why “Ny” is more fragile
than “Nz” is that the value of l at which it reaches strong coupling is
larger. As we shall see in the next subsection, this trend reverses
when the easy-plane anisotropy is stronger; in that case “Nz” is
more fragile than “Ny.”
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hz,c

hx
�

T0

D
e−lc � 1, �4.21�

which we plot in Fig. 12. All in all, this figure indicates that
the field-induced long-range order �“Nz”� is hardly detectable
experimentally when ��1. For small values of hz, the typi-
cal flow diagrams for hz�0 are identical to those of Figs.
7–9 except for the fact that now the plots must end at l= l�.
As an example, consider the parameters of Fig. 9 with hz
=10−6hx. It follows that l��16. The ground state is LL be-
cause 	yC�16�	�1, as shown in Fig. 9.

When hz becomes comparable to the other energy scales
of the problem, LL dominates the experimentally relevant
region of the phase diagram near �=1. On one hand, the
phase boundary between LL and “Ny” is displaced towards
larger values of hx /D, which can be understood by resorting

to the classical arguments of Appendix A. On the other hand,
the phase boundary between LL and “Nz” is pushed to larger
values of �, which also agrees with classical expectations.

B. Abelian bosonization

The main limitation of the non-Abelian bosonization
method employed so far is that it is designed for SU�2� sym-
metric systems, thus becoming gradually unreliable away
from �eff=1. In this section we attempt to overcome this
limitation by turning to Abelian bosonization, which is better
suited to handle exchange anisotropy. Nonetheless, the Abe-
lian bosonization approach has shortcomings of its own.
Most notably, there is no obvious way to perform the chiral
rotation that proved very helpful in the non-Abelian case. All
in all, this subsection does not presents new results but rather
revisits from a different viewpoint the overall features of the
phase diagram derived above.

We begin by gauging away the DM interaction as ex-
plained in Sec. I; this renormalizes the anisotropy parameter
�→�eff=� /
1+D2 /J2 and introduces spatial oscillations in
the component of the magnetic field that is perpendicular to
the DM vector. Next, by mediation of the Jordan-Wigner
transformation we express S j in terms of spinless fermions
� j; Eq. �2.1� then turns into H=H0+Hbs+V, where

H0 = J�
j

1

2
�� j

†� j+1 + H.c.� �4.22�

is the noninteracting part,

Hbs = J�eff�
j
��†� j −

1

2
��� j+1

† � j+1 −
1

2
� �4.23�

is the interacting part ��eff plays the role of interaction
strength�,

V = − hz�
j
�� j

†� j −
1

2
� − hx�

j

�� j
†ei�jei��k�j�k

†�k + H.c.�

�4.24�

collects the DM and Zeeman terms and �=tan−1�D /J�. The
low energy properties of this model may be captured by lin-
earizing the dispersion of the spinless fermions around the
Fermi points and going to the continuum limit,

� j/
a � ReikFx + Le−ikFx; � j+1 � ��x� + a�x��x� ,

�4.25�

where kF=� /2a+hz /v is the Fermi momentum �half-filling
at hz=0�. The right- and left-moving fermion fields are
bosonized via

R =
1


2�a
ei
4�	R; L =

1

2�a

e−i
4�	L, �4.26�

where 	R,L are chiral bosonic fields obeying

�	R,	L� =
i

4
,

FIG. 11. Influence of hz on the phase diagram of Eq. �2.1�;
derived using non-Abelian bosonization. hz=10−5hx, D=0.01J. The
LL ground state is defined �somewhat arbitrarily� via 	yC�l��	�0.2.
Comparing this figure with Fig. 5, it is clear that even a small hz

brings about qualitative changes to the phase diagram. Remarkably,
not only “Nz” is no longer the ground state for ��1, but even for
�
1 there is a swath of parameter space for which LL prevails. For
�eff�1 the phase boundary between LL and “Ny” is pushed to
larger values of hx. This is in qualitative agreement with Eq. �3.1�:
the critical field for the commensurate-incommensurate transition
increases due to hz, such increase being less pronounced as � is
made smaller.

1 2 3 4
h

x
/D

2e-06

4e-06

6e-06

8e-06
h

z,c
/h

x

FIG. 12. Plot of Eq. �4.21� for �=1 and D�0.1J. When hz


hc,z “Nz” is no longer the ground state. hz,c is largest when hx

�D.
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�	R�L��x�,	R�L��y�� = + �− �
i

4
sign�x − y� . �4.27�

Symmetric and antisymmetric combinations of the chiral
fields constitute the dual fields introduced in the previous
subsection,

� = 	R + 	L; � = − 	R + 	L. �4.28�

Using � and � the bosonized form of Eq. �2.1� reads

H = H0 + Hbs + V ,

H0 =
v
2

���x��2 + ��x��2� ,

Hbs = −
2�v

�2�a�2G cos�
8�K� +
2hz


K

v
x� ,

V =
hx

�a
cos�
2�K� +

hz

K

v
x�cos�
2�

K
� +

�

a
K
x� .

�4.29�

In the derivation of V we have used

S+�x� =
e−i
2�/K�


2�a
��− 1�x/a + cos�
2�K��� ,

Sz�x� = −

K

�
�x� +

�− 1�x/a

�a
cos�
2�K�� , �4.30�

neglecting rapidly oscillating terms and absorbing hz and D
through a shift in � and �, respectively. In addition, we have
rescaled the bosonic fields as �→
K� and �→� /
K,
which enables us to write the non-interacting part H0 in the
canonical form. K is the Luttinger parameter that differs
from unity due to interactions ��eff�0�. y��2�1−K�, which
played a central role in the preceding subsection, character-
izes the interaction strength. The cos�
8�K�� term origi-
nates from Umklapp scattering events such as R†�x+a�L�x
+a�L†�x�R�x�. When hz�0 the fermionic system is away
from half-filling, hence the onset of spatial oscillations. Like-
wise, D induces spatial oscillations in cos�
8� /K��, which
can be understood by carrying out the bosonization in a ro-
tated frame.12

The Umklapp perturbation has zero conformal spin and its
scaling dimension is d= �
8�K�2 /4�=2K, which is irrel-
evant for K
1 ��eff�1�. In contrast, V contains a product
of two operators with nonzero conformal spin s

=
2�K
2� /K /2�=1. As a consequence, V generates new
perturbations in the course of the RG flow, which have to be
taken into account. These perturbations have zero conformal
spin and may be derived as indicated in Ref. 17; the outcome
is

H =
v
2

���x��2 + ��x��2� +
4vz

a2 cos�
2�K�

+
hz


K

v
x�cos�
2�

K
� +

�

a
K
x�

−
2�v

�2�a�2G cos�
8�K� +
2hz


K

v
x�

−
2�v

�2�a�2G̃ cos�
8�

K
� +

2�

a
K
x� , �4.31�

where z�hxa /4�v. The new perturbation generated from V
is cos�
8� /K��, with scaling dimensions d=2 /K. This per-
turbation is relevant at �eff�1, which combined with the
fact that cos�
8�K�� is irrelevant suggests that the ground
state should be described by a pinned � field. This guess is
naive, partly because when 2�K−1 /K��1 �namely K
� �1,1.28�� V must be considered together17 with the spin-
less perturbations, which complicates the outcome. More-
over, there are the oscillatory phases that stop the flow of the
coupling constants. As in the non-Abelian study, we elicit the
ground state of H from a multiple-stage renormalization
group analysis.

In the first stage of RG the characteristic momenta are
larger than hz /v and � /a �hereafter we neglect factors of
order one that multiply the oscillatory phases� and we can set
hz=D=0 in Eq. �4.31�. When hz=D=0 Eq. �4.31� describes
two weakly coupled Luttinger liquids; the corresponding
flow equations are known17 to be

dz

dl
= �2 −

1

2
�K +

1

K
��z ,

dG

dl
= 2�1 − K�G + �K −

1

K
�z2,

dG̃

dl
= 2�1 −

1

K
�G̃ + � 1

K
− K�z2,

dK

dl
=

K

2
�G̃2 1

K
− G2K� . �4.32�

When z=0 and K
1, G̃ flows towards strong coupling

and G flows to weak coupling. If G̃ reaches �1�−1�, the
ground state is described by an ordered � �disordered ��
such that cos�
8� /K��=1�−1�. From Eq. �4.30�, this im-
plies that only the staggered component of Sx �Sy� acquires a
nonzero expectation value. Consequently, the ground state is
“Nx” �“Ny”�. Conversely, when z=0 and K�1, G flows to-

wards strong coupling and G̃ flows to weak coupling. If G
reaches �1, the ground state is characterized by an ordered
� �disordered �� such that cos�
8�K��=1. From Eq.
�4.30�, this implies that only the staggered component of Sz

acquires a nonzero expectation value. Consequently, the
ground state is “Nz.” When z�0 the aforementioned trends
are less clear, and a more careful analysis is required. We
note in passing that for �=z=0 Eq. �4.31� is the XYZ
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Thirring model, which as hz increases undergoes a series of
phase transitions from a commensurate �gapped� spin density
wave �SDW� to an incommensurate �gapless� SDW back to a
commensurate SDW through a spin flop.17,20

Equation �4.32� is most reliable for �eff�0 and hx ,hz ,D
�J, because under these conditions the initial values for z,
G, G̃, and y� are guaranteed to be small. In effect, z�0�
�hx /J, G�0���eff+�z2 and G̃�0��z2, where � is a constant
that may be derived perturbatively.12 K�0� can be reliably
determined by integrating Eq. �4.32� backwards so that for
hx=hz=0 one reproduces the well-established LL ground

state with K���−1=1−cos−1��eff� /� and G���= G̃���=z���
=0. For weak magnetic fields, one may still use the same
K�0� to a good approximation. When �eff�0, K renormal-
izes little and hence K�0��1−2�eff /�.

In any event, we are most interested in accessing the
strongly interacting regime �eff�1 so that we can make con-
tact with the previous subsection. In particular we wish to
find out how robust the field-induced “Nz” ground state is
when the easy-plane anisotropy in enhanced. Unfortunately,
for �eff�1 the initial values for the coupling constants are
uncertain. The underlying reason is that G�0��1, which ren-
ders Eq. �4.32� invalid. A more sensible approach is to as-
sume that there has been some prior renormalization group
flow �with unknown flow equations�, which starting from
strong coupling has culminated in a relatively small value of
G at some l= l0. The rationale behind this assumption is that
for �eff�1 the cos�
8�K�� term is irrelevant. Thereafter
Eq. �4.32� determines the flow at l
 l0, and we are left to
guess the initial conditions of the coupling constants at l

= l0. We take z�l0��hx /J and G̃�l0��z�l0�2, with proportion-
ality constants of order unity. On the other hand, we choose
the value for K�l0� by hand; this is tantamount to selecting an
intermediate energy scale for l= l0, which corresponds to a
lengthscale a0 that is larger than the lattice constant a. Fi-
nally, we integrate Eq. �4.32� backwards to determine G�l0�
such that the ground state in absence of fields will reproduce
G→0 and K→Kinf. Since hz ,hx�J, presumably the value of
G�l0� will be nearly independent of the magnetic field. Over-
all, our choice of K�l0� is engineered in a way that Eq. �4.32�
will reproduce the known ground states of a variety of lim-
iting cases, without having to tune the initial values for the
coupling constants. These limiting cases are the following:

�i� �eff�1, hx=hz=0, any D. In this case z�l�= G̃�l�=0
and we are left with flow equations for G and K. We find that
the ground state is LL, in agreement with Bethe ansatz cal-
culations.

�ii� �eff�1, hz=D=0 and hx�0. In this case G̃ flows to

strong coupling: G̃→−�, G→0, K→�. This corresponds to
the “Ny” ground state, which is the expected answer as dis-
cussed in the previous subsection.

�iii� �eff�1, hx=0, hz�0, any D. Here z�l�=0. In the first

stage of RG �l� l1=min(log�v /a0hz� , log�a /a0��)� G̃ is the

relevant perturbation. However, because G̃�l0��z�l0�2 and

z�l0��hx, we have G̃�l0�=0 and dG�l0� /dl=0. Therefore

G̃�l�=0 and there is no possibility for a “Ny” ground state.
The effective RG equations for the first stage are thus

dG

dl
= 2�1 − K�G ,

dK

dl
= −

1

2
K2G2. �4.33�

Since K�l0�
1, G decreases �it is irrelevant at �eff�1�; so
does K, but more slowly than G. Therefore G cannot reach
the strong coupling limit either and moreover its flow stops
at l= l1. In sum, the ground state is LL, which agrees with
Bethe ansatz results.

�iv� �eff=1, D�0, hx�0 and hz=0. �eff=1 is the situa-
tion for which the non-Abelian bosonization discussed above

is reliable. In this case z and G̃ stop flowing at l

=log�a /a0��, beyond which we can set z= G̃=0 in Eq. �4.32�
and keep integrating the flow equations for K and G. We
obtain G→� and K→−� regardless of the hx /D ratio. This
corresponds to the “Nz” ground state and is in agreement
with the results derived in the previous subsection.

Next we compute the more general phase diagram nu-
merically. We begin by taking hz=0. Figure 13 displays the
three phases that compete with each other when �eff�1, and
agrees roughly with Fig. 5 derived from non-Abelian
bosonization. Below �eff��c, “Nz” is no longer the ground
state; instead, “Ny” and LL are stabilized depending on the
hx /D value. When D=0 and hx�0, the ground state is in-
variably “Ny.” Likewise, when D�0 and hx=0, the ground
state is invariably LL. However, “Nz” can be the ground state
at D�0�hx and �eff�1, even though cos�
8�K�� is irrel-
evant, because of the frustrating influence that D and hx have
on each other. Similarly, a LL ground state may emerge at
hx�0 due to the DM interaction, which may cut off the flow

of G̃ before it reaches the strong coupling regime. We use

	G̃�l1�	�0.15 as the criterion that defines “Ny” �note that

	G̃�l0�	�1�. This is a somewhat arbitrary choice that endows

FIG. 13. Influence of exchange anisotropy on the phase diagram
of Eq. �2.1�; derived using Abelian bosonization. D=0.01J, hz=0.
The initial energy scale for the RG flow was chosen via K�l0�
=1.1K���. For �eff�0.97 only “Ny” and LL phases can be found.
This plot agrees roughly with Fig. 5, which was derived using non-
Abelian bosonization. Disagreements between the figures are most
noticeable on the shape of phase boundaries.
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the phase boundaries with uncertainty; nevertheless it is mo-
tivated as an attempt to reproduce the phase diagrams of the
previous subsection.

Unlike in the previous subsection, in the present context
the “Ny” phase displays no trace of dimerization. In effect,
here dimerization is associated with the ordering of � such
that cos�
8�K��=−1; yet in the “Ny” phase � is disordered
because � is pinned. The fact that non-Abelian bosonization
is able capture the coexistence of antiferromagnetism and
dimerization is more a merit of the chiral rotation than an
intrinsic flaw of the Abelian bosonization.

Figure 14 sheds light on the parameter space for which
“Nz” constitutes the ground state. For given �eff�1 and
hx /D, Nz is more robust at larger D �or hx�. In other words,
�c decreases as D and hx increase and their ratio is kept of
order one; this is in agreement with the results derived in the
previous subsection. The reason behind this trend is that G

and G̃ compete which each other, the latter being the most
relevant perturbation at �eff�1. The larger D is the less

chance G̃ has to reach strong coupling, thereby increasing
the likelihood for G to prevail.

When hz�0, the flow of G is interrupted. In qualitative
agreement with Fig. 10, we find �not shown� that the param-
eter range for “Nz” narrows significantly even for a small
value of hz. However, we remark that in the present formal-
ism a weak hz �hz�D� hampers “Nz” but not “Ny” because hz

does not induce oscillations in the factor that multiplies G̃.
This is in qualitative disagreement with the outcome of non-
Abelian bosonization, where hz�0 reduces the likelihood of
both “Ny” and “Nz” �because both phases are linked to the
same coupling constant yC, cf. Sec. IV A�. The classical
study of Section III rules in favor of the non-Abelian result
by anticipating an increase of the critical field for the spin-
flop transition when hz�0. For sufficiently strong hz �hz
�D� the ordering of the RG stages must be reversed and
consequently the phase diagram changes in the Abelian
scheme too, as illustrated in Fig. 16.

As mentioned above, the main results of this subsection
suffer from uncertainties in the initial conditions for the cou-

pling constant. This problem is remedied in the weakly in-
teracting limit ��eff�0� for which the initial values of the
coupling constants are small and known. Figure 15 demon-
strates that for large easy-plane anisotropy ��=0.1� only
“Ny” and LL can be the ground states. This, in conjunction
with the non-Abelian study of the SU�2�-symmetric point,
ratifies that there exists a critical value of � below which
“Nz” disappears. While our calculations indicate that �c is
close to one, numerical density-matrix RG studies might be
desirable to ascertain its precise value, as well as to corrobo-
rate the coexistence of dimerization and antiferromagnetism
in the “Ny” phase.

V. APPLICATION TO SUPERCONDUCTIVITY

Thus far we have discussed the ground states of Eq. �2.1�
in the context of one-dimensional quantum spin chains.
However, there appear to be few experimental studies on
one-dimensional antiferromagnets with uniform DM interac-

FIG. 14. Phase diagram for hz=0, �=0.93; derived using Abe-
lian bosonization. The initial energy scale for the RG flow was
chosen via K�l0�=1.1K���. For such �, “Nz” is absent for D
�0.015J �see also Fig. 13�; it reappears at larger D values. This
demonstrates that �c gets smaller as D and hx increase.

FIG. 15. Phase diagram in the neighborhood of the non-
interacting limit ��=0.1�, where the Abelian bosonization scheme

utilized is most reliable. “Ny” is defined via 	G̃�l1�	
0.15; other
choices would lead to a quantitative change in the slope of the
phase boundary between “Ny” and LL. Regardless, there is no rem-
nants of the “Nz” phase. hz=0 in this figure.

FIG. 16. Same as Fig. 15 but for hz=0.1J. The LL region is
wider due to hz�0, yet “Ny” is still present at larger hx. As ex-
plained in the text, Fig. 15 remains unchanged for 0�hz�D.
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tions. In this section we demonstrate that Eq. �2.1� also mod-
els superconducting nanostructures that might be realizable
in experiments.

First, consider a one-dimensional array of Josephson
junctions2 separated from one another by a distance a. Its
Hamiltonian is

HJJ =
1

2�
i,j

niCi,j
−1nj − EJ�

j

cos� j −  j+1� , �5.1�

where ni denotes the number of Cooper pairs in the ith su-
perconducting island, i is the U�1� superconducting angle
for the ith island �canonically conjugate to ni�, Ci,j is the
capacitance matrix that models the repulsive Coulomb inter-
actions between the Cooper pairs, and EJ is the Josephson
coupling energy. For conventional Josephson junctions EJ

0, while for � junctions23 EJ�0. We neglect dissipative
processes �e.g., quasiparticle tunneling�, which are relatively
unimportant at low temperatures. We are interested in small
superconducting grains24 where the onsite Coulomb interac-
tion is strong, i.e., e2Ci,i

−1�EJ ,T. Accordingly the supercon-
ducting islands are in the Coulomb blockade regime and the
large electrostatic energy cost for changing the number of
Cooper pairs on each island drives the JJ array to an insulat-
ing regime. We consider the particular case in which ni can
acquire only two possible values; the practical implementa-
tion of this scenario may require tuning the chemical poten-
tial of the Cooper pairs via a gate voltage. The two possible
values of charge define a pseudospin degree of freedom for
each island, which enables the mapping of Eq. �5.1� into a
pseudospin Hamiltonian:25,26

HJJ = − EJ�
j

�Sj
xSj+1

x + Sj
ySj+1

y � + Ec�
j

Sj
zSj+1

z − hz�
j

Sj
z.

�5.2�

Sj
z=nj is the number operator for Cooper pairs, and

EcSj+1
z Sj+1

z describes the intergrain Coulomb repulsion �Ec


0�. We have assumed screened Coulomb interactions,27

whereby Ci,i
−1�Ci,i+1

−1 and Ci,i+n
−1 =0 for n�2. This requires

that the self-capacitance of the superconducting island C0 be
larger than the junction capacitance C. C0 and C are defined
via Ci,j ��C0+2C��i,j −C��i,j+1+�i,j−1�. Sj

x and Sj
y are the real

and imaginary part of the superconducting pair operator for
the jth grain, and EJ�Sj

xSj+1
x +Sj

ySj+1
y � is associated with the

tunneling of Cooper pairs between neighboring grains. hz is a
pseudospin magnetic field that describes the deviation of the
chemical potential from the middle point between the elec-
trostatic energies of the two charge states. Unlike in quantum
antiferromagnets, in JJ arrays EJ /Ec may be tuned in situ.28

Second, let us place a large superconductor parallel to the
array of junctions �see Fig. 17�, separated by a distance d. If
the material placed between the JJ array and the bulk super-
conductor is a normal metal, a Josephson coupling will ensue
as long as d��N, where �N is the coherence length of the
normal metal. In magnetic language, the influence of the
large superconductor is equivalent to that of an external mag-
netic field oriented in the xy plane,

H = HJJ − hx�
j

Sj
x, �5.3�

where our gauge choice is determined by hy �0. hx is pro-
portional to the mean field order parameter of the large su-
perconductor. Unlike in the JJ array, we neglect phase fluc-
tuations in the bulk superconductor. Equation �5.3� is a XXZ
model with a uniform pseudomagnetic field.

Third, we add the ingredient which will result in a
Dzyaloshinskii-Moriya interaction in pseudospin space.29 Let
us apply a uniform magnetic field B=Bẑ �see Fig. 17�. The
vector potential A associated with the magnetic field twists
the superconducting angle, so that

H = −
EJ

2 �
j

�ei�Sj
+Sj+1

− + H.c.� + Ec�
j

Sj
zSj+1

z

− hx�
j

�ei�̃jSj
+ + H.c.� − hz�

j

Sj
z, �5.4�

where �= �2� /�0�� j
j+1A�y=0� ·dx and �̃= �2� /�0�� j

j+1A�y
=d� ·dx. �0=h /2e=2�10−15Wb is the flux quantum and we
have taken y�0 at the location of the JJ array. Eq. �5.4�
assumes that in spite of the vector potential the supercon-
ducting phase is spatially homogeneous within each island.
This is a reasonable approximation insofar as the magnetic
flux threading the island is small. For convenience we use
A=−Byx̂, which results in

H = −
EJ

2 �
j

�Sj
+Sj+1

− + H.c.� + Ec�
j

Sj
zSj+1

z

− hx�
j

�ei�̃jSj
+ + H.c.� − hz�

j

Sj
z, �5.5�

with

�̃ = − 2�
�B

�0
; �B � Bda . �5.6�

�B is the magnetic flux penetrating a rectangle formed by a
Josephson junction, perpendicular lines to the bulk supercon-
ductor and the edge of the bulk superconductor. Our choice

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

a

B

SC

X X X X

X X X X X
B BBd

x

y

FIG. 17. Superconducting analogue of Eq. �2.1�: a one-
dimensional array of small superconducting islands �in black� sepa-
rated by Josephson junctions �crosses�, located in close proximity to
a bulk superconductor �shaded area�. The applied magnetic field
�perpendicular to the page� leads to an effective DM interaction in
the JJ array. The Josephson coupling between the bulk supercon-
ductor and the array plays the role of a XY magnetic field in pseu-
dospin space; gate voltages are Z magnetic fields in pseudospin
space. The pseudospin anisotropy is defined by the disparity be-
tween the Josephson coupling and the capacitive energy of the
junctions.
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of the vector potential corresponded to a spatially uniform
magnetic field; nevertheless, Eq. �5.5� is valid more gener-
ally. If EJ�0 �� junctions�, Eq. �5.5� completes the mapping
into Eq. �2.2�. In contrast, if EJ
0 �conventional junctions�
we need to make an additional pseudospin rotation by an
angle � for every other site: Sj

+→exp�i�j�Sj
+. The resulting

correspondence between the antiferromagnetic and the super-
conducting models can be summarized as follows:

Antiferromagnet Conventional JJ array �-JJ array


J2+D2 EJ −EJ

J� Ec Ec

�=tan−1�D /J� �̃+� �̃

hx ,hz hx ,hz hx ,hz

The phase diagrams calculated in the previous sections are
valid for D ,hx ,hz�J. Therefore, those results may be trans-
ferred directly to the case of conventional junctions only
when �B��0 /2 and hx ,hz�EJ. On the other hand, for �
junctions our RG analysis has access to �B�0 and hx ,hz

�EJ.
Figure 18 illustrates the physical meaning of the magnetic

phase diagram in the present context. “Nz” corresponds to an
insulating charge density wave phase, where the number of
Cooper pairs oscillates from one island to another. “Ny” is a
vortex phase,30 where there are circulating currents with al-
ternating chirality flowing between the JJ array and the bulk
superconductor. In addition, “Ny” contains some dimeriza-
tion:

�Sj
+Sj+1

− � = � + �− 1� j� ,

�Sj
zSj+1

z � = � + �− 1� j� , �5.7�

where � ,� ,� ,� are constants. The first line of Eq. �5.7�
implies that the effective Josephson coupling between sites
2j and 2j−1 is larger than that between sites 2j and 2j+1. In
other words, the magnitude of the circulating currents oscil-
lates from one “plaquette” to another and is larger for one
chirality than for the opposite chirality. The second line of
Eq. �5.7� means that the magnitude of the effective junction
capacitance oscillates from one plaquette to another. In other
words, if island 2j has zero Cooper pairs then site 2j−1 is
more likely to have one Cooper pair than site 2j+1. Finally,
LL is the gapless ground state in which the superconducting
angles of the junctions form a soliton lattice. Throughout the
foregoing discussion we have generally ignored the back ac-
tion of the 1D array on the bulk superconductor, and in par-
ticular we have neglected the magnetic fields generated by
the alternating currents in the “Ny” phase. This approxima-
tion is safest when the effective London penetration depth is
larger than the size of the array.31

Let us discuss the phase diagram of a conventional array
with Ec�EJ, which in the magnetic problem corresponds to
�eff�1. When �B�0, the order parameter of the JJ array is

aligned ferromagnetically with that of the bulk supercon-
ductor. Although this result does not follow from the field
theoretical calculations of the present paper, its counterpart
in quantum spin chains is well established. In effect, for �̃
=0 and hz=0 the superconducting model becomes equivalent
to a spin 1 /2 antiferromagnet with staggered DM interaction
in a transverse magnetic field, which was first studied in
Ref. 9. The ground state in this case was found to be antifer-
romagnetic with the Neel vector aligned with the external
field. In pseudospin language this translates into the afore-
mentioned ferromagnetic ground state.

As the magnetic field increases the pseudospins of the JJ
array are increasingly twisted, with the concomitant loss of

(a)

(d)

(c)

(b)

FIG. 18. Analogs of the magnetic phases in conventional Jo-
sephson junction arrays—classical representation for hz=0. Dashed
arrows represent the direction of the order parameter ��̃j� in the
bulk superconductor. The gauge choice is determined by Eq. �5.5�.
Solid arrows portray the order parameter of the superconducting
islands in the one-dimensional JJ array. The vector potential twists
the direction of the pseudospins in the XY plane. �a� Ferromagnetic
phase. This is the classical ground state for small magnetic fields
��B→0�, a regime in which the field theoretical results of the
present paper do not apply. The spatial gradient of the order param-
eter implies Meissner currents flowing at the edge of the bulk su-
perconductor. �b� “Nz” phase at �B��0 /2 �for simplicity we have
plotted the order parameter of the bulk superconductor as though
�̃=��. This charge density wave state is dominant at Ec
EJ and
may also arise at Ec�EJ provided that 	�B /�0−1 /2	�hx /EJ �al-
though the experimental detection in the latter regime is highly
unlikely�. The pseudospins of the array point along Z with alternat-
ing sign. �c� “Ny” phase at �B��0 /2 �for simplicity we have plot-
ted the order parameter of the bulk superconductor as though �̃
=��. There are circulating supercurrents of alternating chirality and
oscillating magnitude across the interface between the bulk super-
conductor and the 1D array. �d� LL phase at �B��0 /2 �for sim-
plicity we have plotted the order parameter of the bulk supercon-
ductor as though �̃=��. When �B−�0 /2=0 the array ignores the
twist in the order parameter of the bulk superconductor and adopts
a ferromagnetic configuration �not shown� along an arbitrary direc-
tion in the XY plane, much as though the bulk superconductor did
not exist. When 0� 	�B−�0 /2	�hx /EJ the classical configuration
is a soliton lattice �only one soliton is shown in the figure�.
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exchange energy. For �B��0 /2, it is no longer optimal to
have a ferromagnetic alignment between the array and the
bulk superconducting angles. Instead, the ground state is
“Ny” �if 	�B /�0−1 /2	�hx /EJ� or LL �if 	�B /�0−1 /2	

hx /EJ�. Furthermore, if Ec /EJ� ��c ,1�, “Nz” emerges as
the ground state at 	�B /�0−1 /2	�hx /EJ. Finding “Nz” at
Ec�EJ is counterintuitive because it means that the proxim-
ity coupling from the bulk superconductor drives the array
into an insulating ground state. By tuning hx or the applied
�real� magnetic field, one may induce transitions between the
three phases. In particular, if Ec /EJ��c there is a
commensurate-incommensurate transition between LL and
“Ny.” The critical value of the proximity coupling for this
transition is

hx,c �
�

2
��̃ + ��EJ. �5.8�

This critical field changes in presence of a gate voltage �hz�
as indicated by Eq. �3.1�.

The experimental detection of the aforementioned phases
requires SQUID measurements,23 which would target the cir-
culating currents of “Ny” ground states, as well as measure-
ments of the critical current of the array,24 which would be
exponentially suppressed with the length of the array in the
“Nz” ground state26 but not in the LL phase. We briefly com-
ment on a number of additional experimental requirements:

�i� The Josephson coupling between the islands in the
array must be stronger than the coupling between the islands
and the bulk superconductor, because our field theoretical
results apply for hx�EJ. Moreover, our model applies for
short-ranged Coulomb interactions in the array, i.e., for C
�C0.

�ii� The temperature of the system must be smaller than
the gaps in the “Ny” and “Nz” ground states: T�hx�EJ ,Ec.
For typical values of the Josephson coupling �EJ�1K for
low-temperature superconductors� this requirement is most
pressing at Ec�EJ, where the energy gap associated with
“Nz” is only �0.077EJ exp�−10��5  K �recall Sec. IV A�.
As Ec and EJ are made dissimilar the gaps may increase to
O�hx��10 mK.

�iii� The array must be long enough so as to reduce the
quantum tunneling between degenerate ground states. In ef-
fect, “Ny” and “Nz” each break a Z2 symmetry: there are two
degenerate “Nz” or “Ny” phases that differ from each other
only by a translation of a lattice constant.

�iv� The superconducting grains must be small enough to
justify the pseudospin 1 /2 approximation. At the same time
the area of a plaquette �a�d� should be large enough to
enclose a flux �B=�0 /2 using magnetic fields that are
smaller than the critical field of the superconducting islands
�note that this concern does not apply to arrays of � junc-
tions, for which we require �B�0�. The “inverted-T” shape
of the islands depicted in Fig. 17 could help satisfy both
conditions. For aluminum, a�d�0.1  m2 would ensure
that the applied field remains below the critical field.32

It may be experimentally challenging to tune the gate
voltage such that hz vanishes precisely. When hz�0, the

phase boundaries of “Nz” and “Ny” recede while the region
of LL expands. As discussed in Sec. IV, this effect is sub-
stantial when Ec�EJ but becomes relatively unimportant
when EJ�Ec or EJ�Ec.

VI. SUMMARY AND CONCLUSIONS

We have evaluated the zero-temperature phase diagram of
an antiferromagnetic spin 1 /2 chain in presence of uniform
Dzyaloshinskii-Moriya interactions, symmetric exchange an-
isotropy and arbitrarily oriented magnetic fields. We have
used non-Abelian as well as Abelian bosonization, and have
generally found qualitative agreement between the two
schemes. When the two diverge, the former approach proves
to be more reliable. Our calculations predict the emergence
of three competing phases for spin chains with easy-plane
anisotropy. One of them �phase �i�� is an antiferromagnet
with its Neel vector along the direction of the DM vector.
This phase was introduced in previous work,12 whose scope
was limited by the assumption of isotropic symmetric ex-
change. Our results indicate that phase �i� is unstable under
weak-to-moderate easy-plane anisotropy: we have estimated
the critical value of the anisotropy beyond which it disap-
pears. This value is sensitive to the magnitude of the DM
interaction, as well as to the magnitude and direction of the
applied magnetic field. The two new ground states that occur
as a consequence of symmmetric easy-plane exchange aniso-
tropy are �ii� a dimerized antiferromagnet with Neel vector
perpendicular to both the DM vector and the magnetic field,
�iii� a gapless Luttinger liquid, whose classical counterpart is
a soliton lattice. Phase �ii� arises when the DM interaction is
weak compared to the magnetic field component transverse
to the DM vector; phase �iii� ensues in the opposite regime.
Phase �i� may then be understood as an outcome of the frus-
tration between competing phases �ii� and �iii�; indeed it is
most likely to emerge when the DM interaction is neither
large nor small compared to the transverse magnetic field
component. It would be interesting to verify and refine these
predictions using the numerical density-matrix renormaliza-
tion group method.

Motivated in part by the scarcity of experiments on one-
dimensional antiferromagnets with uniform Dzyaloshinskii-
Moriya interaction, we have searched for alternative systems
where our calculations may be experimentally tested. Thus
we have mapped the original magnetic problem into a math-
ematically equivalent superconducting problem involving a
one-dimensional array of Josephson junctions �either con-
ventional or �-type junctions� in close proximity to a bulk
superconductor. An applied perpendicular magnetic field
plays the role of a uniform DM interaction. We have dis-
cussed the physical meaning of the magnetic phases in the
superconducting context, including that of dimerization. The
exquisite tunability of Josephson junction parameters in one-
dimensional arrays may provide an interesting avenue to
probe and replicate the influence of DM interactions and
magnetic fields in one-dimensional quantum antiferromag-
nets with symmetric exchange anisotropy.
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APPENDIX A: INFLUENCE OF hc ON THE CLASSICAL
COMMENSURATE-INCOMMENSURATE TRANSITION

The objective of this appendix is to determine how the
classical soliton lattice �Sec. III� is modified when a mag-
netic field is applied along the direction of the DM vector.
Let us parametrize the classical spin at site j as S j

=S�sin � j cos 	̃ j , sin � j sin 	̃ j , cos � j�. Then Eq. �2.1� can be
rewritten as

H = − J̃S2�
j

�sin � j sin � j+1 cos�	 j+1 − 	 j − ��

− �eff cos � j cos � j+1� − hxS�
j

�− 1� j sin � j cos 	 j

− hzS�
j

cos � j , �A1�

where 	 j = 	̃ j −�j, J̃=J
1+D2 /J2 and �eff=� /
1+D2 /J2.
Taking advantage of the fact that 	 j+1−	 j −� is small for
each j, we write

H = − J̃S2�
j
�sin � j sin � j+1�1 −

1

2
�	 j+1 − 	 j − ��2�

− �eff cos � j cos � j+1� − hxS�
j

�− 1� j sin � j cos 	 j

− hzS�
j

cos � j . �A2�

Let us define

	 j = a�j� + �− 1� jb�j� ,

� j = c�j� + �− 1� jd�j� , �A3�

where a ,b ,c ,d are functions that vary slowly along the soli-
ton.

Keeping only the non-alternating terms and making the
continuum approximation we arrive at the following expres-
sion for the Hamiltonian density h �H� �dxh�:

h = − J̃S2��1 − �2 − d2��1 −
1

2
�da

dx
− ��2

− 2b2�
− �eff��2 − d2�� − hxS��d�1 −

b2

2
�cos a

− �1 −
d2

2
−
�2

2
�b sin a� − hzS��1 −

d2

2
� , �A4�

where �=cos c. In addition we have used sin b�b, cos b
�1−b2 /2, sin d�d, sin c�1−�2 /2 and so on.

Now we determine the optimal value for the functions
a ,b ,c ,d. The value of b that minimizes h is

b = −
hxS sin a

4J̃S�1 − �2 − d2� + hx�d cos a
�1 −

d2

2
−
�2

2
�

� −
hx sin a

4J̃S
�1 +

�2

2
+

d2

2
−

hx�d cos a

4J̃S
� �A5�

Substituting this expression back in the Hamiltonian we ob-
tain

h � − J̃S2��1 − �2 − d2��1 −
1

2
�da

dx
− ��2� − �eff��2 − d2��

− hxS�d cos a − hzS��1 −
d2

2
� −

hx
2 sin2 a

8J̃
�A6�

Next we optimize d. For �eff�1, h is minimized for d
given by

d �
hx� cos a

2J̃S�1 − �eff�
�1 +

1

2�1 − �eff�
�da

dx
− ��2

−
hz�

2J̃S�1 − �eff�
� , �A7�

which indicates that the staggered component of � is nonzero
only near the core of the soliton �far from the core cos a
�0 as shown in Ref. 14�. For simplicity in the above ap-

proximation we assumed that 	�eff−1	�hz
2 / J̃2S2 , �da /dx

−��2. Substituting the expression for d in the Hamiltonian
we get

h � − J̃S2��1 − �2��1 −
1

2
�da

dx
− ��2� − �eff�

2� − hzS�

−
hx

2 sin2 a

8J̃
−

hx
2�2 cos2 a

4J̃�1 − �̃�
. �A8�

Next we optimize �. For �eff�1, h is minimized for �
given by

� =
hz

2J̃S�1 + �eff�
�1 +

1

2�1 + �eff�
�da

dx
− ��2

+
hx

2 cos2 a

4J̃2S2�1 − �eff
2 �
� . �A9�

Plugging this expression back in Eq. �A8� and following
with some algebra we get the sine-Gordon Hamiltonian with
effective parameters,

h = h0 +
JeffS

2

2
�da

dx
− ��2

−
heff

2 sin2 a

8Jeff
, �A10�

where
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h0 = − J̃S2 −
hz

2

4J̃�1 + �eff�
−

hz
2hx

2

16J̃3S2�1 + �eff��1 − �eff
2 �

,

Jeff = J̃�1 −
hz

2

4J̃2S2�1 + �eff�2� ,

heff = hx
�1 −
hz

2

2J̃2S2�1 + �eff��1 − �eff
2 �
��1 −

hz
2

4J̃2S2�1 + �eff�2� � hx
1 −
hz

2

4J̃2S2

3 − �eff

�1 + �eff�2�1 − �eff�
. �A11�

Following the same procedure as in Ref. 14, the critical field
for the commensurate-incommensurate transition is given by

heff = ��Jeff, �A12�

which yields

hx,c�1 −
hz

2

8J̃2S2

3 − �eff

�1 + �eff�2�1 − �eff��
� ��J̃S�1 −

hz
2

4J̃2S2�1 + �eff�2� . �A13�

After some quick algebra this results in

hx,c = ��J̃S�1 +
hz

2

8J̃2S2�1 − �eff
2 �
� , �A14�

which is precisely Eq. �3.1�.

APPENDIX B: CASE STUDIES: SIMPLE REGIONS OF
THE QUANTUM PHASE DIAGRAM

The objective of this appendix is to verify the consistency
of Eqs. �4.11� and �4.13�, and Table I for a variety of cases in
which Bethe ansatz solutions are available. As a byproduct
we derive an expression for the constant c defined through
�xc=c�1−��, and comment on our choice for the RG cutoff
energy scale.

�i� XXZ model with hx=hz=0 and D�0. In this case �R
=0, �L=−� and thus yA�0�= ỹA�0�=0. It follows that yA�l�
= ỹA�l�=0. Accordingly the pertinent RG equations become

dyx

dl
= yzyy ;

dyy

dl
= yzyx;

dyz

dl
= yxyy , �B1�

with initial conditions given by yx�0�=−yy�0�=gbs / �2�v�
and yz�0�=gbs�1+�� / �2�v�. yx�0�=−yy�0� implies yx�l�
=−yy�l� and thus there is no instability towards “�” or “Nx.”
Moreover because yx�l�=−yy�l� we are left with Eq. �4.14�
for yC and y�, which applies when l� l	 as well as when
l
 l	. The analytical solutions of the Kosterlitz-Thouless
equations dictate that when �
0 �easy-plane anisotropy� the
system flows to the gapless LL phase �yC→0�, whereas
when ��0 �easy-axis anisotropy� the system evolves to “Nz”
�yC→��. We reiterate that the O�D2 /J2� term in the

bosonized form of V �cf. Eq. �4.3�� is crucial in order to get
the correct answer for the case in which �=1 and D�0. In
particular, for �
0 Bethe ansatz calculations prove that
yC→0 and y�→2�1−Kinf�, where Kinf

−1 =1−cos−1��eff� /�.
With this in mind we evaluate the value of the constant c,
which enters the definition of �. We start by recognizing that
Eq. �B1� implies y��0�2−yC�0�2=y����2−yC���2 with
yC�0�=gbs /2�v and y��0�=−yC�0��1+��. This results in

y�����−
2�gbs /2�v�−
2c
1−�effgbs /2�v, where we
have neglected O��2� and O(�1−��D2 /J2) terms. Comparing
this with the Bethe ansatz prediction we obtain

c = � 2

�

2�v
gbs

�2

� 7.66. �B2�

�ii� XXZ model with hx=D=0 and hz�0. In this case
�R=�L=0. Namely, the “chiral” rotation is simply the iden-
tity. In this case too yA�l�= ỹA�l�=0 and the RG equations are
given by Eq. �B1�. The initial conditions are yx�0�=yy�0�
=−gbs / �2�v� and yz�0�=yy�0��1+��. It follows that yC�l�
=0 and Eq. �B1� turns into KT equations for yB and y�. For
��0 the system flows to yB�l�→−�, which in the original
coordinates corresponds to “Nz” �recall Eq. �4.16��. yB
reaches strong coupling �yB�−1� when l= lc= �2�v /gbs���
−cos−1�1+��� /
−2� for ��0. However, hz interrupts the
flow of yB at l= l	 �note that t�=0� and thus “Nz” is the
ground state only when l	
 lc; for l	� lc the ground state is
LL. Reaching strong coupling requires hz�hc where

hc � T0 exp�−
2�v
gbs

�


2c�� − 1�
� �B3�

is the critical field defined through l	= lc. The prefactor in
Eq. �B3� is somewhat arbitrary because it depends on the
precise value of yB�l� for which one decides that “strong
coupling” has been reached. The critical field is also known
from Bethe ansatz calculations,16 which dictate hc /J
�exp�−�2 /2
2��−1�� for ��1. Matching the exponent of
this expression with that of Eq. �B3� yields c=7.66, in agree-
ment with Eq. �B2�. On the other hand, for �
0 Eq. �B1�
flows to a weak-coupling regime regardless of hz �provided
that hz�J�. Once again this LL phase agrees with Bethe
ansatz predictions.

�iii� XXZ model with hz=D=0 and hx�0. In this case
�R=�L=−� /2 and thus yA�l�= ỹA�l�=0. The flow equations
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are once again given by Eq. �B1�, with yy�0�=yz�0�
=−gbs / �2�v� and yx�0�=−gbs�1+�� / �2�v�. These RG equa-
tions must be replaced by Eq. �4.14� at l� l	. We find that for
�
0 the ground state is “Ny” and while for ��0 the system
flows to “Nz.” These results are in concordance with the clas-
sical considerations of Section I and agree with independent
quantum mechanical calculations.21 We note in passing that
there is no LL phase in the XXZ model with a uniform trans-
verse field �i.e., D=0 in Eq. �2.2��.

�iv� XXX model with D=hx=0 and hz�0. In this case
yx�0�=yy�0�=yz�0�=−gbs /2�v and the stage I flow equations
reduce to dyi /dl=yi

2 �for i=x ,y ,z�, whose solution is yi�l�
=−�gbs /2�� / �1+ lgbs /2�v�. All couplings stop renormalizing

at l	=log�v /a0hz�. The Luttinger parameter K=1− 1
2 y��l	� is

then given by

K = 1 −
1

2 log�h0

hz
� ; h0 =

v
a0hz

exp� gbs

2�v
� . �B4�

Using T0=v /a0=0.077J and gbs=0.23� �2�v� we get h0

=5.95J. This is slightly smaller than h0=J
8�3 /e=9.55J,
obtained from solving the Bethe ansatz equations.33 How-
ever, this discrepancy is masked by the fact that the precise
value of l	 is uncertain �we could have used l	
=log�Av /a0hz�, where A is any constant of order one�.
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